MA 222 - Analysis II: MEasure and Integration (JAN-APR, 2016)

A. K. Nandakumaran, Department of Mathematics, IISc, Bangalore Problem set 1 (Preliminaries)

1. Sketch the following functions:
(a) $x, x^{2}, x^{3},|x|, x|x|, \sin x, \exp (x), \exp (-x)$ in \mathbb{R}
(b) $\log x, \sin \left(\frac{1}{x}\right), x \sin \left(\frac{1}{x}\right)$ in $(0, \infty)$
2. Analyze the continuity and differentiability of the above functions. Construct a function which is n-times differentiable nut not $n+1$ times.
3. Let $f(x)=\frac{1}{x^{\alpha}}$ in $(0,1)$ where $0<\alpha \leq 1$. Is f continuous? What about uniform continuity? justify.
4. Suppose f is a real function defined on \mathbb{R} that satisfies $\lim _{h \rightarrow 0}(f(x+h)-f(x-h))=0, \forall x \in \mathbb{R}$. Does this imply that f is continuous?
5. Check right and left discontinuities of the largest integer function $[x]$ and fractional function $\{x\}=x-[x]$.
6. a) Find the upper and lower limits of the sequence given by $x_{1}=0, x_{2 m}=\frac{1}{2} x_{2 m-1}, x_{2 m+1}=$ $1+x_{2 m}$.
b) Prove that the convergence of x_{n} implies the convergence of $\left|x_{n}\right|$. What about converse?
7. Prove that any countable union of open sets is open and countable intersection of closed sets is closed. What about countable intersection of open sets (known as G_{δ} sets) and countable union of closed sets (known as F_{σ} sets).
8. Show that $\underline{\lim } x_{n} \leq \varlimsup x_{n}\left(\right.$ Recall $\underline{x}=\underline{\lim } x_{n}=\sup _{n} \inf _{k \geq n} x_{k}$ and $\left.\bar{x}=\overline{\lim } x_{n}=\inf _{n} \sup _{k \geq n} x_{k}\right)$. Further prove, $l=\underline{\lim } x_{n}=\overline{\lim } x_{n}$ if and only if $l=\lim x_{n}$.
9. If $\underline{x}=\lim x_{n}$ finite if and only if (i) given $\epsilon>0, \exists N$ such that $x_{k} \geq \underline{x}-\epsilon, \forall k \geq N$ and (ii) given $\epsilon>0, \forall n, \exists k \geq n$ such that $x_{k} \leq \underline{x}+\epsilon$.
10. Let E be the set of cluster points of $\left\{x_{k}\right\}$. Then, show that $\bar{x}=\sup E$ and $\underline{x}=\inf E$. (l is called a cluster point of x_{k} if every neighborhood of l contains a point from $\left.\left\{x_{k}\right\}\right)$.
11. Give lower and upper limits of sequence of sets.
12. Consider $f_{n}(x)=x^{n}, 0 \leq x \leq 1$. Let $f(x)=\lim f_{n}(x)$. Find f. Is the convergence uniform in $[0,1]$? Is the convergence uniform in $[0, \delta]$, where $0<\delta<1$?
13. Consider

$$
f_{n}(x)= \begin{cases}n^{2} x, & 0 \leq x \leq \frac{1}{n} \\ -n^{2} x+2 n, & \frac{1}{n} \leq x \leq \frac{n}{n} \\ 0, & \frac{2}{n} \leq x \leq 1\end{cases}
$$

Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. Are f_{n}, f continuous? Is the convergence uniform? Find $\int_{0}^{1} f_{n}(x)$ and $\int_{0}^{1} f(x)$. What about $\int_{0}^{1} f_{n}(x) \rightarrow \int_{0}^{1} f(x)$?
14. Show, if $f_{n} \rightarrow f$ uniformly in [0.1] and f_{n}, f are Riemann integrable, then $\int_{0}^{1} f_{n}(x) \rightarrow \int_{0}^{1} f(x)$.
15. Let $A=\mathbb{Q} \cap[0,1], B=[0,1] \backslash A$. Arrange A as $\mathrm{A}=\left\{x_{1}, x_{2}, \cdots\right\}$.

Define $f_{n}(x)= \begin{cases}1, \text { if } & x \in\left\{x_{1}, x_{2}, \cdots x_{n}\right\} \\ 0, & \text { otherwise }\end{cases}$
Is f_{n} Riemann integrable? Find $f=\lim _{n \rightarrow \infty} f_{n}(x)$. Is f Riemann integrable?
16. Give an example of a function defined on $[0,1]$ which is Riemann Integrable but has infinitely many discontinuities.
17. a) Let $A=[0,1] \cap \mathbb{Q}$. Given any $\epsilon>0$, construct a countable collection of open intervals $\left\{I_{k}\right\}_{k=1}^{\infty}$ such that $A \subset \bigcup_{k=1}^{\infty} I_{k}$ and $\Sigma_{k=1}^{\infty} l\left(I_{k}\right) \leq \epsilon$.
b) On the other hand if $\left\{I_{k}\right\}_{k=1}^{n}$ is a finite open cover of A, then show that $\sum_{k=1}^{n} l\left(I_{k}\right) \geq 1$
18. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous and $\int_{0}^{1}|f(x)| d x=0$. Show that $f(x)=0, \forall x \in[0,1]$.
19. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous and $\int_{0}^{y} f(x) d x=0 \forall y \in[0,1]$. Show that $f \equiv 0$ in $[0,1]$.

