MA 222 - Analysis II: Measure and Integration (JAN-APR, 2016)

A. K. Nandakumaran, Department of Mathematics, IISc, Bangalore Problem set 1 (Preliminaries)

- 1. Sketch the following functions:
 - (a) $x, x^2, x^3, |x|, x|x|, \sin x, \exp(x), \exp(-x)$ in \mathbb{R}
 - (b) $\log x$, $\sin(\frac{1}{x})$, $x\sin(\frac{1}{x})$ in $(0,\infty)$
- 2. Analyze the continuity and differentiability of the above functions. Construct a function which is *n*-times differentiable nut not n + 1 times.
- 3. Let $f(x) = \frac{1}{x^{\alpha}}$ in (0,1) where $0 < \alpha \le 1$. Is f continuous? What about uniform continuity? justify.
- 4. Suppose f is a real function defined on \mathbb{R} that satisfies $\lim_{h \to 0} (f(x+h) f(x-h)) = 0, \forall x \in \mathbb{R}$. Does this imply that f is continuous?
- 5. Check right and left discontinuities of the largest integer function [x] and fractional function $\{x\} = x [x]$.
- 6. a) Find the upper and lower limits of the sequence given by x₁ = 0, x_{2m} = ¹/₂x_{2m-1}, x_{2m+1} = 1 + x_{2m}.
 b) Prove that the convergence of x_n implies the convergence of |x_n|. What about converse?
- 7. Prove that any countable union of open sets is open and countable intersection of closed sets is closed. What about countable intersection of open sets (known as G_{δ} sets) and countable union of closed sets (known as F_{σ} sets).
- 8. Show that $\underline{\lim} x_n \leq \overline{\lim} x_n$ (Recall $\underline{x} = \underline{\lim} x_n = \sup_n \inf_{k \geq n} x_k$ and $\overline{x} = \overline{\lim} x_n = \inf_n \sup_{k \geq n} x_k$). Further prove, $l = \underline{\lim} x_n = \overline{\lim} x_n$ if and only if $l = \lim x_n$.
- 9. If $\underline{x} = \lim_{k \to \infty} x_n$ finite if and only if (i) given $\epsilon > 0$, $\exists N$ such that $x_k \ge \underline{x} \epsilon, \forall k \ge N$ and (ii) given $\epsilon > 0, \forall n, \exists k \ge n$ such that $x_k \le \underline{x} + \epsilon$.

- 10. Let E be the set of cluster points of $\{x_k\}$. Then, show that $\overline{x} = \sup E$ and $\underline{x} = \inf E$. (*l* is called a cluster point of x_k if every neighborhood of *l* contains a point from $\{x_k\}$).
- 11. Give lower and upper limits of sequence of sets.
- 12. Consider $f_n(x) = x^n$, $0 \le x \le 1$. Let $f(x) = \lim f_n(x)$. Find f. Is the convergence uniform in [0,1]? Is the convergence uniform in $[0,\delta]$, where $0 < \delta < 1$?
- 13. Consider

$$f_n(x) = \begin{cases} n^2 x , & 0 \le x \le \frac{1}{n} \\ -n^2 x + 2n , & \frac{1}{n} \le x \le \frac{n}{n} \\ 0 , & \frac{2}{n} \le x \le 1 \end{cases}$$

Find $f(x) = \lim_{n \to \infty} f_n(x)$. Are f_n , f continuous? Is the convergence uniform? Find $\int_0^1 f_n(x)$ and $\int_0^1 f(x)$. What about $\int_0^1 f_n(x) \to \int_0^1 f(x)$?

- 14. Show, if $f_n \to f$ uniformly in [0.1] and f_n , f are Riemann integrable, then $\int_0^1 f_n(x) \to \int_0^1 f(x)$.
- 15. Let $A = \mathbb{Q} \cap [0, 1]$, $B = [0, 1] \setminus A$. Arrange A as $A = \{x_1, x_2, \dots\}$. Define $f_n(x) = \begin{cases} 1 , if & x \in \{x_1, x_2, \dots, x_n\} \\ 0 , & \text{otherwise} \end{cases}$ Is f_n Riemann integrable? Find $f = \lim_{n \to \infty} f_n(x)$. Is f Riemann integrable?
- 16. Give an example of a function defined on [0,1] which is Riemann Integrable but has infinitely many discontinuities.
- 17. a) Let $A = [0,1] \cap \mathbb{Q}$. Given any $\epsilon > 0$, construct a countable collection of open intervals $\{I_k\}_{k=1}^{\infty}$ such that $A \subset \bigcup_{k=1}^{\infty} I_k$ and $\sum_{k=1}^{\infty} l(I_k) \leq \epsilon$. b) On the other hand if $\{I_k\}_{k=1}^n$ is a finite open cover of A, then show that $\sum_{k=1}^n l(I_k) \geq 1$
- 18. Let $f:[0,1] \to \mathbb{R}$ be continuous and $\int_0^1 |f(x)| dx = 0$. Show that $f(x) = 0, \forall x \in [0,1]$.
- 19. Let $f:[0,1] \to \mathbb{R}$ be continuous and $\int_0^y f(x)dx = 0 \ \forall \ y \in [0,1]$. Show that $f \equiv 0$ in [0,1].